

Instructions to all students:

1. Please do the examples 1 to 14 (There are some challenges along the way)

2. Then do the Mixed Exercise questions 1 to 24 (which you will find towards the end of the booklet)

Index laws

You can use the laws of indices to simplify powers of the same base.

• $a^m \times a^n = a^{m+n}$

• $a^m \div a^n = a^{m-n}$

• $(a^m)^n = a^{mn}$

• $(ab)^n = a^n b^n$

Example

Simplify these expressions:

$$\mathbf{a} \quad x^2 \times x^5$$

b
$$2r^2 \times 3r^3$$

$$c \frac{b^7}{b^4}$$

d
$$6x^5 \div 3x^5$$

e
$$(a^3)^2 \times 2a^2$$

b
$$2r^2 \times 3r^3$$
 c $\frac{b^7}{b^4}$ **d** $6x^5 \div 3x^3$ **e** $(a^3)^2 \times 2a^2$ **f** $(3x^2)^3 \div x^4$

Example 2

Expand these expressions and simplify if possible:

b
$$y^2(3-2y^3)$$

a
$$-3x(7x-4)$$
 b $y^2(3-2y^3)$ **c** $4x(3x-2x^2+5x^3)$ **d** $2x(5x+3)-5(2x+3)$

Example 3

Simplify these expressions:

a
$$\frac{x^7 + x}{x^3}$$

b
$$\frac{3x^2 - 6x^2}{2x}$$

a
$$\frac{x^7 + x^4}{x^3}$$
 b $\frac{3x^2 - 6x^5}{2x}$ **c** $\frac{20x^7 + 15x^3}{5x^2}$

1.2 Expanding brackets

To find the **product** of two expressions you **multiply** each term in one expression by each term in the other expression.

> Multiplying each of the 2 terms in the first expression by each of the 3 terms in the second expression gives $2 \times 3 = 6$ terms.

$$(x + 5)(4x - 2y + 3) = x(4x - 2y + 3) + 5(4x - 2y + 3)$$

= $4x^2 - 2xy + 3x + 20x - 10y + 15$
= $4x^2 - 2xy + 23x - 10y + 15$ Simplify your answer by collecting like terms.

Example

Expand these expressions and simplify if possible:

$$a(x+5)(x+2)$$

b
$$(x-2y)(x^2+1)$$

$$(x - y)^2$$

a
$$(x+5)(x+2)$$
 b $(x-2y)(x^2+1)$ **c** $(x-y)^2$ **d** $(x+y)(3x-2y-4)$

Expand these expressions and simplify if possible:

a
$$x(2x+3)(x-7)$$

b
$$x(5x-3y)(2x-y+4)$$
 c $(x-4)(x+3)(x+1)$

$$(x-4)(x+3)(x+1)$$

Challenge

Expand and simplify $(x + y)^4$.

Factorising

You can write expressions as a **product of their factors**.

Factorising is the opposite of expanding brackets.

Expanding brackets

$$4x(2x + y) = 8x^{2} + 4xy$$
$$(x + 5)^{3} = x^{3} + 15x^{2} + 75x + 125$$
$$(x + 2y)(x - 5y) = x^{2} - 3xy - 10y^{2}$$

Factorising

Example

Factorise these expressions completely:

a
$$3x + 9$$

b
$$x^2 - 5x$$

c
$$8x^2 + 20x$$

b
$$x^2 - 5x$$
 c $8x^2 + 20x$ **d** $9x^2y + 15xy^2$ **e** $3x^2 - 9xy$

e
$$3x^2 - 9xy$$

■ A quadratic expression has the form $ax^2 + bx + c$ where a, b and c are real numbers and $a \neq 0$.

To factorise a quadratic expression:

- Find two factors of ac that add up to b For the expression $2x^2 + 5x 3$, $ac = -6 = -1 \times 6$ and -1 + 6 = 5 = b.
- Rewrite the b term as a sum of these two $2x^2 x + 6x 3$ factors
- Factorise each pair of terms - = x(2x-1) + 3(2x-1)
- Take out the common factor - = (x + 3)(2x - 1)
- $x^2 y^2 = (x + y)(x y)$

Example

Factorise:

a
$$x^2 - 5x - 6$$

b
$$x^2 + 6x + 8$$

b
$$x^2 + 6x + 8$$
 c $6x^2 - 11x - 10$ **d** $x^2 - 25$ **e** $4x^2 - 9y^2$

d
$$x^2 - 25$$

e
$$4x^2 - 9y^2$$

Example

Factorise completely:

a
$$x^3 - 2x^2$$

b
$$x^3 - 25x$$

a
$$x^3 - 2x^2$$
 b $x^3 - 25x$ **c** $x^3 + 3x^2 - 10x$

Challenge

Write $4x^4 - 13x^2 + 9$ as the product of four linear factors.

1.4 Negative and fractional indices

Indices can be negative numbers or fractions.

$$x^{\frac{1}{2}} \times x^{\frac{1}{2}} = x^{\frac{1}{2} + \frac{1}{2}} = x^{1} = x$$

similarly
$$x^{\frac{1}{n}} \times x^{\frac{1}{n}} \times \dots \times x^{\frac{1}{n}} = x^{\frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n}} = x^1 = x$$

You can use the laws of indices with any rational power.

- $a^{\frac{1}{m}} = \sqrt[m]{a}$
- $a^{\frac{n}{m}} = \sqrt[m]{a^n}$
- $a^{-m} = \frac{1}{a^m}$
- $a^0 = 1$

Example

Simplify:

- a $\frac{x^3}{x^{-3}}$

- **b** $x^{\frac{1}{2}} \times x^{\frac{3}{2}}$ **c** $(x^3)^{\frac{2}{3}}$ **d** $2x^{1.5} \div 4x^{-0.25}$ **e** $\sqrt[3]{125x^6}$ **f** $\frac{2x^2 x}{x^5}$

Example

Evaluate:

- a $9^{\frac{1}{2}}$
- **b** $64^{\frac{1}{3}}$
- c $49^{\frac{3}{2}}$
- **d** $25^{-\frac{3}{2}}$

Example (11)

Given that $y = \frac{1}{16}x^2$ express each of the following in the form kx^n , where k and n are constants.

a
$$y^{\frac{1}{2}}$$

b
$$4y^{-1}$$

1.5 Surds

If *n* is an integer that is **not** a square number, then any multiple of \sqrt{n} is called a surd. Examples of surds are $\sqrt{2}$, $\sqrt{19}$ and $5\sqrt{2}$.

Surds are examples of irrational numbers.

The decimal expansion of a surd is never-ending and never repeats, for example $\sqrt{2} = 1.414213562...$

You can use surds to write exact answers to calculations.

You can manipulate surds using these rules:

•
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

•
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Simplify:

b
$$\frac{\sqrt{20}}{2}$$

c
$$5\sqrt{6} - 2\sqrt{24} + \sqrt{294}$$

Example

Expand and simplify if possible:

a
$$\sqrt{2}(5-\sqrt{3})$$

b
$$(2-\sqrt{3})(5+\sqrt{3})$$

1.6 Rationalising denominators

If a fraction has a surd in the denominator, it is sometimes useful to rearrange it so that the denominator is a rational number. This is called rationalising the denominator.

The rules to rationalise denominators are:

- For fractions in the form $\frac{1}{a}$, multiply the numerator and denominator by \sqrt{a} .
- For fractions in the form $\frac{1}{a+\sqrt{b}}$, multiply the numerator and denominator by $a-\sqrt{b}$.
- For fractions in the form $\frac{1}{a-\sqrt{b}}$, multiply the numerator and denominator by $a+\sqrt{b}$.

Example 14

Rationalise the denominator of:

$$\mathbf{a} \ \frac{1}{\sqrt{3}}$$

b
$$\frac{1}{3+\sqrt{2}}$$

c
$$\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}}$$
 d $\frac{1}{(1 - \sqrt{3})^2}$

d
$$\frac{1}{(1-\sqrt{3})^2}$$

Mixed exercise 1

1 Simplify:

$$\mathbf{a} \quad y^3 \times y^5$$

$$\mathbf{b} \ \ 3x^2 \times 2x^5$$

b
$$3x^2 \times 2x^5$$
 c $(4x^2)^3 \div 2x^5$

d
$$4b^2 \times 3b^3 \times b^4$$

2 Expand and simplify if possible:

a
$$(x+3)(x-5)$$

b
$$(2x-7)(3x+1)$$

b
$$(2x-7)(3x+1)$$
 c $(2x+5)(3x-y+2)$

3 Expand and simplify if possible:

a
$$x(x+4)(x-1)$$

b
$$(x + 2)(x - 3)(x + 7)$$

b
$$(x+2)(x-3)(x+7)$$
 c $(2x+3)(x-2)(3x-1)$

4 Expand the brackets:

a
$$3(5v + 4)$$

b
$$5x^2(3-5x+2x^2)$$

$$5x(2x+3) - 2x(1-3x)$$

a
$$3(5y + 4)$$
 b $5x^2(3 - 5x + 2x^2)$ **c** $5x(2x + 3) - 2x(1 - 3x)$ **d** $3x^2(1 + 3x) - 2x(3x - 2)$

- 5 Factorise these expressions completely:
 - a $3x^2 + 4x$
- **b** $4v^2 + 10v$ **c** $x^2 + xv + xv^2$ **d** $8xv^2 + 10x^2v$

- 6 Factorise:
 - $a x^2 + 3x + 2$
- **b** $3x^2 + 6x$
- $x^2 2x 35$
- **d** $2x^2 x 3$

- e $5x^2 13x 6$ f $6 5x x^2$
- 7 Factorise:
 - a $2x^3 + 6x$
- **b** $x^3 36x$ **c** $2x^3 + 7x^2 15x$
- Simplify:
 - a $9x^3 \div 3x^{-3}$
- **b** $(4^{\frac{3}{2}})^{\frac{1}{3}}$
- c $3x^{-2} \times 2x^4$
- d $3x^{\frac{1}{3}} \div 6x^{\frac{2}{3}}$

- Evaluate:
 - $a \left(\frac{8}{27}\right)^{\frac{2}{3}}$
- $\mathbf{b} \left(\frac{225}{280}\right)^{\frac{3}{2}}$
- 10 Simplify:
 - a $\frac{3}{\sqrt{63}}$
- **b** $\sqrt{20} + 2\sqrt{45} \sqrt{80}$
- 11 a Find the value of $35x^2 + 2x 48$ when x = 25.
 - b By factorising the expression, show that your answer to part a can be written as the product of two prime factors.
- 12 Expand and simplify if possible:
 - a $\sqrt{2}(3+\sqrt{5})$
- **b** $(2-\sqrt{5})(5+\sqrt{3})$ **c** $(6-\sqrt{2})(4-\sqrt{7})$
- 13 Rationalise the denominator and simplify:

- $\mathbf{a} \ \frac{1}{\sqrt{3}} \qquad \mathbf{b} \ \frac{1}{\sqrt{2}-1} \qquad \mathbf{c} \ \frac{3}{\sqrt{3}-2} \qquad \mathbf{d} \ \frac{\sqrt{23}-\sqrt{37}}{\sqrt{23}+\sqrt{37}} \qquad \mathbf{e} \ \frac{1}{(2+\sqrt{3})^2} \qquad \mathbf{f} \ \frac{1}{(4-\sqrt{7})^2}$
- 14 a Given that $x^3 x^2 17x 15 = (x + 3)(x^2 + bx + c)$, where b and c are constants, work out the values of b and c.
 - **b** Hence, fully factorise $x^3 x^2 17x 15$.
- (E) 15 Given that $y = \frac{1}{64}x^3$ express each of the following in the form kx^n , where k and n are constants.
 - a $v^{\frac{1}{3}}$

(1 mark)

b $4v^{-1}$

- (1 mark)
- E/P 16 Show that $\frac{5}{\sqrt{75}-\sqrt{50}}$ can be written in the form $\sqrt{a}+\sqrt{b}$, where a and b are integers. (5 marks)
 - (E) 17 Expand and simplify $(\sqrt{11} 5)(5 \sqrt{11})$.

(2 marks)

(E) 18 Factorise completely $x - 64x^3$.

(3 marks)

(E/P) 19 Express 27^{2x+1} in the form 3^y , stating y in terms of x.

(2 marks)

- E/P 20 Solve the equation $8 + x\sqrt{12} = \frac{8x}{\sqrt{3}}$

Give your answer in the form $a\sqrt{b}$ where a and b are integers.

(4 marks)

- (P) 21 A rectangle has a length of $(1 + \sqrt{3})$ cm and area of $\sqrt{12}$ cm². Calculate the width of the rectangle in cm. Express your answer in the form $a + b\sqrt{3}$, where a and b are integers to be found.
- 22 Show that $\frac{(2-\sqrt{x})^2}{\sqrt{x}}$ can be written as $4x^{-\frac{1}{2}} 4 + x^{\frac{1}{2}}$. (2 marks)
- **E/P)** 23 Given that $243\sqrt{3} = 3^a$, find the value of a. (3 marks)
- **E/P** 24 Given that $\frac{4x^3 + x^{\frac{3}{2}}}{\sqrt{x}}$ can be written in the form $4x^a + x^b$, write down the value of a and the value of b. (2 marks)

Challenge

- a Simplify $(\sqrt{a} + \sqrt{b})(\sqrt{a} \sqrt{b})$.
- **b** Hence show that $\frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \dots + \frac{1}{\sqrt{24} + \sqrt{25}} = 4$

Self-Evaluation and further questions:

- What topics from sections 1.1 to 1.6 (above) did you find difficult?
- 2. What topics in GCSE Mathematics do you normally do well at?
- What topics in GCSE Mathematics do you enjoy?
- What is your predicted Grade for GCSE Mathematics?
- Why would you like to study Mathematics A Level?
- Why have you chosen to study at Central St Michaels?
- 7. How would you describe your work ethic and are you committed to putting the time and hard work into your Mathematics A Level?
- 8. Please give details of any learning support that you require.

Thank you for completing all set tasks and I shall see you when the term begins. Please remember to bring in your completed work to your first day at Central St Michaels.